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Abstract

The purpose of this document is to distill, from literature, the effects of radiation damage in
fused-silica optical fibers. This information will be used to design a theoretical framework capable
of predictive modeling that will be published elsewhere. By inspection of the relevant literature, the
devised method is calculation of defect amorphous structures by molecular dynamic techniques, and
computation of the macroscopic dielectric function using density functional theory. The dielectric
function is then used to directly compute the transmittance of the core material before and after
irradiation via solution of Maxwell’s equations in a homogeneous medium.

1 Introduction

Optical fibers are primarily drawn glass used to transmit light. They are invaluable across space, nuclear,
high-energy, and telecommunications applications. Sensors, data links, laser technologies, and others [1],
all make use of optical fibers. Many of these applications demand that fibers endure harsh or extreme
environments, especially, temperature and radiation. For example, space applications like satellites
require optical fiber data links [2, 3], but operating outside the Earth’s atmosphere exposes the fiber to
large temperature gradients [4] and increased doses of radiation [5]. Nuclear and fusion facilities may
need to couple light out of critical areas [6], and the proximity to nuclear reactions exposes the fibers
bombardment by highly energetic particles. The safety of nuclear reactor vessels and nuclear power
plants relies on monitoring systems that employ fiber optics [7]. Much recent effort has been devoted
by Cheymol and coworkers [8] to test the effects of neutron irradiation on single-mode optical fibers.
Facilities such as the Large Hadron Collider require sensing measurements that are often coupled out
into optical fibers, and work has been done to enable radiation detection via the sensitivity of optical fibers
to radiation [9]. In light of these applications, a non-empirical modeling scheme capable of predicting
the optical/mechanical properties of fibers in harsh environments is greatly desired.

1.1 Summary of radiation damage effects

The modern understanding of radiation-induced damage in optical fibers is summarized in a 2020 report
by Campanella et al [10]. They discuss the large-scale modeling effort to build CERTYF (Combined
Effects of Radiations, Temperature and hYdrogen on silica-based optical Fibers), and lay out the central
features of radiation-induced damage in optical fibers. It can be broken down into three parts.

1. Radiation-induced attenuation (RIA): a wavelength and time-dependent phenomenon correspond-
ing to a decrease in the transmitted signal.

2. Radiation-induced emission (RIE): this consists of Cerenkov light or light emitted from some pre-
existing or radiation-induced defects excited by the radiation.

3. Radiation-induced refractive index change (RIRIC).

An important comment made by Campanella et al [10] is: “At the moment, a predictive model of
the RIA, given the composition of the fiber and its environmental conditions, does not exist,

†cns@lanl.gov

1



1.2 Goal of modeling effort and approach 2 LITERATURE REVIEW

even if some semi-empirical models exist at fixed temperature of irradiation”. They go on
to say that the only current method of fiber qualification is through direct experimental characterization
of its vulnerability. This means there is an obvious, current need in this field, and suggests any work
towards a truly predictive modeling capability will have lasting scientific impact.

1.2 Goal of modeling effort and approach

Radiation-induced attenuation (RIA) is the most dominant effect, and is fundamentally a result of
changes in the behavior of the light-matter interaction. This is captured by the macroscopic dielectric
function ε (D = εE). The refractive index, emission, and absorption are all encapsulated in the macro-
scopic dielectric function. Understanding the optical effects of radiation then is reduced to being able
to predict the dielectric function for a given material system. The material system before and after
irradiation can effectively be viewed as a different material with different defect concentration and elec-
tronic structure. Therefore, the following question guides the focus of this review: What changes are
induced in the opto-mechanical properties of silica fibers as a function of dose, dose rate,
and temperature?

2 Literature Review

2.1 Fundamental physics

This section reviews the fundamental physics of optical fibers and establishes a working knowledge of
the literature in this regard – emphasis is placed on radiation resilience.

An optical fiber uses the index of refraction difference between the core and the cladding layer to in-
stantiate a waveguide for light. If the dielectric properties of either medium are affected by exposure to
radiation or temperature, the possibility of failure increases. Therefore, a lot of work has been devoted
to understanding how the core’s optical properties change as a function of radiation dose, dose rate,
and temperature [11]. However, its interaction with the cladding is also important. See Figure 1 for a
schematic representation of these components. We will focus on the core material, but some considera-
tion may be given to the cladding layer. No consideration is given at this time to the materials outside
of these layers.

For an in depth discussions regarding the fundamental, physical phenomenon that govern radiation-
induced attenuation, Alessi et al [12] provide a general review of the importance of point defects in
silica-based materials. They discuss the temperature dependence of defect diffusion as well as electron
trap dynamics, and attribute most of the temperature dependence of RIA to these phenomena. De
Michele et al [13] discuss origin of RIA in the presence of X-ray irradiation, and attribute RIA to
self-trapped hole defects. In a 2019 work, Akchurin et al [14] discuss the radiation hardness in cerium-
doped fused-silica optical fibers. This paper has several good references about fundamental theory.
They find aluminum or cerium tend to make fibers radiation soft, and that a rate equation approach
works reasonably well in the regime of 10-100 Gy and 10-100 mins, but 1-10 Gy/hr for months needs
more work. In line with Campanella et al [10], Akchurin et al claim “molecular level simulations
to investigate radiation effects in doped fused-silica are not yet available”, suggesting an
atomistic approach would be valued by the community working on rad-hard fibers. S. Girard has led
numerous investigations of irradiated optical fibers including several general purpose reviews [15–18],
one review on space applications [19], two articles describing hole effects [20, 21], one article describing
kinetics [22], and one article discussing neutron sensitivity [23]. Girard’s exhaustive work shows
the macroscopic responses are well described by semi-empirical modeling techniques, but a
microscopic theory linking fiber chemistry with performance although is absent and highly
desired. Finally, in a 1993 review by Griffioen et al [24], it is shown that of the 10 available lifetime
models for fibers, they can all be reduced to 1 basic model. This work indicates that the fundamental
issues regarding lifetime of fibers has been well described at the macroscopic level for many years, but in
light of the more recent works calling for atomistic modeling, it provides more evidence that an atomistic
approach will be a meaningful scientific route to follow.
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Core - SiO2:OH

Cladding - flourine doped SiO2:OH

Buffer (not investigated)

Jacket (not investigated)

Figure 1: Schematic of typical fiber construction

2.2 Temperature effects

Temperature affects the lifetime of radiation-induced defects, which in turn, affects the absorption char-
acteristics of fibers. Kuhnhenn et al [25] review the temperature effects in irradiated fibers. In general,
radiation-induced damage effects decrease with increasing temperature . This behavior is log-
ical because increased thermal energy will allow more defects to spontaneously annihilate.1 There is
however literature to suggest this general trend is wavelength and composition dependent. For example,
Jin et al [27, 28] comment on the temperature dependence of RIA in the near infrared (NIR), and find
the usual inverse relationship between RIA and temperature does not hold in the NIR. In this case,
the RIA is decreased at lower temperatures, contradicting the notion that thermal energy helps anneal
radiation-induced defect centers. Additional work by Jin et al [29] highlights several key factors of the
temperature dependence of RIA

• The temperature dependence of RIA in an irradiated fiber is wavelength-dependent.

• The RIA in fibers with a higher total radiation dose is more sensitive to temperature.

• The transmission wavelength has the maximum impact on temperature dependence of RIA

Their data does show that during the first 5000 seconds at room temperature, the loss decreases, however,
as the temperature is elevated to 60 ◦C over 15000 seconds, the loss increases. The fact that this result
is wavelength dependent aligns with the notion that thermal energy enables the creation/annihilation
of a particular species of defect, and even at equilibrium, specific defects retain a significant population.
Additional evidence that operating wavelength and composition affects RIA is given by Vecchi et al [30].
Alessi et al [31–33] measure the radiation-induced attenuation (RIA) in Ge-doped optical fibers and find
that the temperature dependence of RIA depends on the dose. The general trend however is the RIA is
a linearly decreasing function of excitation wavelength. Different Ge defect types available at different
temperatures are attributed to the different RIA dependencies as a function of temperature. Blanc et
al [34] measure RIA at cryogenic temperatures in regards to applications at the Large Hadron Collider
(LHC). They claim RIA inversely varies with temperature because annealing can almost completely heal
any radiation damage. At cryogenic temperature, no annealing can take place, and there is a huge
RIA.

2.3 Rate equation modeling

The dependence of radiation-induced induced attenuation generally follows a power law
function of the dose. This is an experimental observation. Significant effort has been devoted to
understanding the origin of this power law, as well as developing predictive models that leverage it. This
statement is discussed theoretically in this section, and its experimental counterpart is discussed later
in section 2.5. The Griscom et al paper [35] is a fundamental result in this regard. It is tour de force of
radiation effects prediction. The observed universal behavior of tens of thousands of condensed matter
samples all showing the time dependence of a relaxation process q(t) going as

q(t) = q0exp

[
−
(
t

τ

)α]
(1)

1This is in line with previous work showing the transmission characteristics of neutron irradiated fibers returned to their
pristine levels within one minute at room temperature [26].
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is discussed as originating in (i) stochastic diffusion-controlled reactions in disordered solids and (ii) “hi-
erarchically limited dynamics resulting in correlated relaxation processes consisting of several successive
steps”. This motivation allows them to conclude, after direction validation of the concept against exper-
iment, that the experimental power-law function for growth kinetics is actually the envelope function of
a series of first-order rate equation solutions each with a unique production rate Ki and recombination
rate Ri. Along these lines, Borgermans and Brichard [36] investigate the spectral and kinetic behavior
of gamma irradiated pure silica fibers in spent fuel facilities. They develop a simple model ṅ = aḊ−n/τ
where n is defect concentration, Ḋ is the dose rate, τ is the lifetime. The important aspect is both dose
and temperature come into play even at level of first-order kinetic equations, and attenuation (A) follows
power law functions of dose (D) as

A = CDf , (2)

where C and f are unknown constants. Gilard et al [37] work along similar lines with an nth-order
rate equation model to describe the dose, dose rate, and temperature dependence of RIA in fibers.
This works well to fit power law dependencies, but at this time, its advantage is not clear. Liu and
Johnston [38] build a theory following arguments similar to Griscom [35]. It is based on super-posing the
individual generation and decay of optically active defect centers, but the dose-rate dependence can be
incorporated. They focus on the recovery time, and find good agreement between theory and experiment.
Recent simulation work was performed by Ma et al [39]. They build a rate equation analysis and are
able to investigate radiation effects. The role of defect production can be treated within a rate equation
approach [40].

2.4 Atomistic modeling

Here we review theoretical works targeting first-principles modeling. The 2018 book by Bagatin and
Geradin [41] demonstrates the need for a multi-physics approach spanning multiple length and time
scales. It shows that there are current efforts to design a workflow starting with molecular dynamics,
moving through density functional theory, and using advanced techniques like solution of the Bethe-
Salpeter equation to understand the optical properties of irradiated glasses. The use of GW and BSE
methods for a-SiO2 suggests that complex many-body effects may play a significant role in these materials
as well. We briefly review each step in this workflow in turn.

Molecular dynamics of SiO2 is studied rather extensively. A 2020 report by Okada et al [42] has many
useful references regarding the molecular dynamics of irradiated silica. Next, connecting the defect
wave functions to the macroscopic optical properties comes through the dielectric function ε(ω). This
is available with modern density functional theory [43, 44] (although still non-trivial). Finally, we seek
to know the change in transmittance. Fugallo et al [45] show how to get transmittance from dielectric
function ε(ω). The reflectivity r and power loss factor τ are defined as

τ = exp

[
−4πd · Im

(√
ε

λ

)]
, r =

∣∣∣∣√ε− 1√
ε+ 1

∣∣∣∣2 , (3)

with the transmittance T as

T =
τ(1− r)2

1− r2τ2
. (4)

These equations give a transparent connection between DFT and the measurements. Because the primary
microscopic effect of radiation damage is creation of defects, it is important to investigate the energetics
of defects in crystalline SiO2. Work along these lines has been done by Yue et al [46] and Giacomazzi et
al [47].

Several works at the level of DFT+GW+BSE have also been done for advanced modeling of optical
properties [48, 49]. These works discuss optical properties of defects, photobleaching, generation of
defects during drawing out of optical fibers, and the role of exciton physics. There are some exciton
states ∼ 1 eV below the fundamental gap ∼ 9 eV. El-Sayed et al [50, 51] find evidence for electron/hole
localization in a-SiO2. Localization centers are created, new absorption bands are created, and annealing
can remove the absorption bands. They additionally discuss defect statistics in a-SiO2.

2.5 Experimental characterization

This section comments on experiments investigating RIA. In general, γ-rays and X-rays have the same
qualitative effect, but the γ-ray effects are more pronounced. Neutron damage produces oxygen vacancy
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type defects, while photon irradiation instantiates oxidation/reduction processes.

The types of defects created by radiation exposure depends on the initial fiber composition. Wen et
al [52] and Devine et al [53] perform spectroscopic investigation of defects by Raman and EPR. Blanchet
et al [54] show that proton and X-ray irradiation induce similar effects at 10kGy, but electron beam
irradiation effects depend on fiber composition. B/Ge rich fibers are sensitive to electrons, H2-loaded
P/Ce fibers are susceptible to X-rays. This means the sensitivity to a particular radiation source is linked
to fiber composition. Thus, it is desirable to measure the relation between composition and radiation-
resilience. Wen et al [55] and Reghioua et al [56] show that the existence and impact of point defects in
silica-based fibers can be effectively investigated with luminescence measurements.

Along similar lines, Al-Helou et al [57] measure optical absorption and photoluminescence intensities of
Cu doped SiO2 before and after X and γ irradiation. They find radiation-induced absorption bands, and
infer change in Cu+ local symmetry. Kim et al [58] find the Verdet constant of Cu-doped germano-silicate
fibers to increase 1.46 fold post γ-irradiation. This means the birefringence of the material has been
enhanced.2 The effects of x-rays have been studied by De Michele et al [59]. They characterize canonical
optical fibers with different dopants at different temperatures, and claim RIA in visible spectrum well
understood, while RIA in the infrared is less understood. Recent experimental data is in line with
historical data [60].

Skuja et al [61] discuss neutron-irradiated α-quartz (SiO2) crystal and show non-bridging oxygen hole
centers (oxygen dangling bonds) contribute to photoluminescence at 20 K, but also to crystal-like zero-
phonon line excitations. Contrasting neutron and photon irradiation, neutron shows unique effects
suspected to come from direct modification of the silica network [62], and that only neutrons are capable
of inducing oxygen defect centers [63]. Skuja et al [61, 64] show that neutron irradiation can amorphize
parts of crystalline SiO2. They also show that phonon excitations become important in the presence of
silicon dangling bonds. This 2019 work by Petrie et al [65] investigates high-dose neutron damage both
experimentally and theoretically. They show hydrogen loading can improve radiation-resilience in the
UV and visible ranges, but leads to increased absorption in the IR range.

Finally, Kashaykin et al [66, 67] discuss the role of strain and temperature in the formation of self-
trapped holes (STH), and how these play into the radiation-induced attenuation. The conclusion is that
multiple types of defects are possible, but one type is favored in strained samples and another type is
favored in native samples. On the other hand, strained samples can have long live STH’s, and therefore
enhanced RIA. Piccolo et al show that 1% strain can be significant [68]. The fiber drawing temperature
(intrinsic strain) is shown to have significant effect on the radiation-resilience of fibers [69]. All this
work suggests that the transmittance profile will be different for the strained and unstrained
fibers.

3 Summary

The use of optical fibers in radiation-extreme environments is increasing, yet fundamental understanding
of damage mechanisms and associated quantitative modeling toolsets are far from complete. Because the
ability of a fiber to transmit light degrades with radiation-induced material point defects, an effective
modeling and simulation capability requires bridging length scales from nanometer to kilometer. The
literature reviewed in this document suggests the best approach will incorporate a multi-physics method
comprised of classical molecular dynamic treatment of atomic defects, a quantum treatment of the light-
matter interaction, and a classical solution of Maxwell’s equations for light inside a damaged fiber.

2The ability of left and right circularly polarized light to interact with the material has been altered.
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